Inhaltsverzeichnis

Abschlussitzung 22.07.2021

Fortführung der Diskussion aus der letzten Sitzung

„The master's tools will never dismantle the master's house.“ – Audre Lorde, 1984

„What does it mean when the tools of a racist patriarchy are used to examine the fruits of that same partriarchy? It means that only the most narrow perimeters of possible and allowable.“ (Audre Lorde 1984: 110)

„The challenge is to employ the master's tools to dismantle the master's house.“ – Nikita Dhawan (???)

„…the Enlightenment ideals are eminently indispensable, and we „cannot not want them“, even as their coercive mobilization in service of the continued justification of imperialism must be contested.“ (Nikita Dhawan 2013: 156f)

Quellen


Diskussion über das Buch


Thesen aus der letzten Sitzung

:?: Frage: Wie können sich Betroffene gegen Formen von Unterdrückung wehren und wie können reale Veränderungen angestoßen werden? (203-205)

Diskussionsfrage: Die genannten Projekte aus dem Buch sind größten Teils aus dem US-amerikanischen Raum. Kennt ihr andere Projekte, Organisationen oder Kampagnen?

:?: Frage: How to challenge the matrix of domination?


Rückblick der Autorinnen

Seven Principles of Data Feminism

  1. Examine Power: „Examining power means naming and explaining the forces of oppression that are so baked into our daily lives - and into our datasets, our databases, and our algorithms - that we often don’t even see them. Seeing oppression is especially hard for those of us who occupy positions of privilege“ (24)
  2. Challenge Power: „Data feminism commits to challenging unequal power structures and working toward justice“ (49)
  3. Elevate Emotion and Embodiment: „Data feminism teaches us to value multiple forms of knowledge, including the knowledge that comes from people as living, feeling bodies in the world“(73)
  4. Rethink Binaries and Hierarchies: „Data feminism requires us to challenge the gender binary, along with other systems of counting and classification that perpetuate oppression“ (97)
  5. Embrace Pluralism: „Data feminism insists that the most complete knowledge comes from synthesizing multiple perspectives, with priority given to local, Indigenous, and experiential ways of knowing“ (125)
  6. Consider Context: „Data feminism asserts that data are not neutral or objective. They are the products of unequal social relations, and this context is essential for conducting accurate, ethical analysis“ (149)
  7. Make Labor Visible: „The work of data science, like all work in the world, is the work of many hands. Data feminism makes this labor visible so that it can be recognized and valued“ (173)
Diskussionsfrage: Wie überzeugend/inspirierend fandet ihr die 7 Prinzipien? Fehlt euch etwas? Seht ihr jetzt schon Möglichkeiten, bei aktuellen oder bevorstehenden Projekten, wie ihr diese Prinzipien anwenden möchtet/könnt?

Das Ziel der Autorinnen:
“This book is intended to provide concrete steps to action for data scientists seeking to learn how feminism can help them work toward justice, and for feminists seeking to learn how their own work can carry over to the growing field of data science. It is also addressed to professionals in all fields in which data-driven decisions are being made, as well as to communities that want to resist or mobilize the data that surrounds them. It is written for everyone who seeks to better understand the charts and statistics that they encounter in their day-to-day lives, and for everyone who seeks to communicate the significance of such charts and statistics to others.” 19


Matrix of domination (24-25) ⇒ (Power Chapter)


Die Matrix of domination, inspiriert durch Partricia Hill Collins, soll erklären, wie sich Machtsysteme formieren und wie sie wirken, bzw. erlebt werden (24f).